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ABSTRACT

In recent years, geostatistics and stochastic modeling have made a tremendous
impact on scientific investigation. This chapter describes the relationship between
these two ideas, provides a historical perspective on their development, and dis-
cusses the ways in which they have evolved, both separately and in concert with
each other. Important issues impacting future development are also addressed.

INTRODUCTION

In recent years, geostatistics and stochastic mod-
eling have found their way into several scientific
endeavors where they have been used in significant
ways to address a diverse array of problems that are
important to the well-being of mankind. Interest in
these particular problem-solving approaches has ex-
panded from rather modest beginnings to the point
that individuals across almost all disciplines recog-
nize their value and actively incorporate them into
research and applications. This has become increas-
ingly more evident as the importance of space and
geography have become recognized in science and
industry, and as scientists have come to embrace the
ideas of spatial analysis and spatial statistics.

The increased interest in geostatistics and stochas-
tic modeling has also roughly tracked a series of con-
ferences on these topics that have been conducted
throughout the last 30 yr. In 1975, for example, there
was a North Atlantic Treaty Organization Advanced
Study Institute entitled Advanced Geostatistics in the
Mining Industry (although it included applications

in petroleum and hydrology as well). A 1993 con-
ference entitled Geostatistics for the Next Century
provided a look at how geostatistics might impact
the succeeding decades. Finally, the quadrennial In-
ternational Geostatistics Congress was established
nearly 30 yr ago, with the most recent installment
(2004) being conducted in Banff, Alberta, Canada.

Throughout the years, many have reflected on the
future of geostatistics and stochastic modeling, with
at least one entire conference being dedicated to the
subject (Dimitrakopoulos, 1994). At the 1996 Inter-
national Geostatistics Congress held in Wollongong,
New South Wales, Australia, Srivastava (1997) posed
a timely question, asking, “Where are we going?”’
Although the question might not have been com-
pletely answered, it certainly inspired considerable
debate; and since that time, there seems to have been
a greater effort to give the discipline more overall
focus. Clearly, not all the problems have been solved,
nor all the issues addressed. The objective of the pres-
ent discussion is to underscore some of the situa-
tions, both technical and philosophical, that, from the
author’s perspective, represent ongoing distractions
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in the field. Obviously, this will not be the last time
someone reflects on the state of geostatistics and
stochastic modeling; but perhaps this exchange will
help to stimulate still more lively conversation, more
open communication, and possibly even resolution
of some of the ongoing difficulties.

It is necessary to make a few general comments
at the outset of this dialog to set the stage for what is
to follow. First, the distinction between stochastic
methods (which for now will encompass both geosta-
tistics and other stochastic modeling approaches) and
deterministic methods is, today, somewhat blurred.
In fact, the distinction is somewhat more of a per-
ception or convenience instead of a reality. In their
book entitled An Introduction to Stochastic Modeling,
Karlin and Taylor (1998, p. 492) stated the following:

A quantitative description of a natural
phenomenon is called a mathematical
model of that phenomenon ... A deter-
ministic model predicts a single outcome
for a given set of circumstances. A sto-
chastic model predicts a set of possible
outcomes weighted by their likelihoods
or probabilities. .. However, phenomena
are not in and of themselves inherently
stochastic. Rather, to model the phenome-
non as stochastic or deterministic is the
choice of the observer.

Although the title of the book is An Introduction
to Stochastic Modeling, it is, in fact, really about sto-
chastic processes, which is a different topic with a
different focus than is implied in the present context.
Stochastic modeling, then, might be understood as
somewhat more general than geostatistics, although
both emphasize stochastic phenomena. However, in
stochastic modeling, more emphasis is placed on
modeling, whereas in geostatistics, more emphasis is
placed on data analysis.

Second, most developments in geostatistics and
stochastic modeling have been, and likely always
will be, strongly driven by applications. Note that
Holden et al. (2003) interpreted stochastic modeling
as simply pertaining to the modeling of a petroleum
reservoir. In fact, it is probably fair to say that not
many really new ideas in this field have been pro-
mulgated through fundamental theoretical research,
in the same sense that new ideas in mathematics and
traditional statistics are developed from first princi-
ples. The applications-driven nature of geostatistics

and stochastic modeling is broadly evident by the
number and diversity of examples appearing in an
ever-widening literature. As a result, some of the is-
sues that have arisen throughout the years really
stem from the proliferation of methodologies beyond
the conventional boundaries of earth science in which
geostatistics and stochastic modeling have evolved.
Such issues are both theoretical and practical in nature
and sometimes simply reflect the kind of conflict that
emerges at the interface of history, language, termi-
nology, and culture. Therefore, to understand some

.of the difficulties currently plaguing the discipline of

geostatistics and stochastic modeling, the best place
to start may be in the past.

A BIT OF HISTORY

Geostatistics is a relatively new discipline, and
much of its development has occurred throughout
the last 30-40 yr. Through its flagship journal, Math-
ematical Geology, the International Association for
Mathematical Geology (IAMG) has largely been re-
sponsible for disseminating many of the theoretical
advances in geostatistics, with other organizations,
corporations, and academic institutions making many
important contributions in both theory and appli-
cations. The IAMG dates from 1968, and almost
from its inception, the association recognized the
significance of this emerging discipline. However,
even well before that time, there were many exam-
ples of probability and statistics being applied to
earth science investigations. For example, the crucial
work of Gandin (1963), Matheron (1965), and Matérn
(1986) all predate the establishment of the IAMG.
Perhaps because of language differences (Swedish
in the case of Matérn and Russian in the case of
Gandin) as well as Matheron’s affiliation with Ecole
des Mines in Paris, his work and those of his students
became better known. :

In retrospect, Michel David’s move from Fontai-
nebleau to the University of Montreal in 1968 (see
Dimitrakopoulos and Dagbert, 2001) and Andre Jour-
nel’s move from Fontainebleau to Stanford Univer-
sity in 1978 were watershed events that greatly in-
creased the interest in geostatistics, particularly in
the United States and Canada. Together, David (1977)
and Journel and Huijbregts (1978) profoundly in-
fluenced the theoretical and methodological devel-
opment of geostatistics for several decades and
fundamentally altered the way scientists view the
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physical world. The impact of these two scholars on
spatial thinking and the practice and mechanics of
stochastic modeling is well known, and their names
are commonly associated with the expansion of geo-
statistics from the earth sciences into other disci-
plines, including medicine, public health, business,
and the environment.

Despite the extensive influence of these and other
individuals, there was not a large number of people
using geostatistical methods in the 1970s and into
the 1980s. The knowledge base and number of prac-
titioners have grown tremendously since then, but
the community of geostatisticians and stochastic
modelers remains comparatively small even today.
In fact, formal academic training programs in these
disciplines are still not widely available, with only
a handful of universities in the United States offer-
ing such programs.

One particular problem has to do with an ongo-
ing conflict between the practitioners of geostatistics
and traditional statistical methods. Geostatistics is
viewed in some circles as a reinvention and repack-
aging of statistical principles that were already well
known; however, the most devoted of geostatisticians
contend that traditional statistical methods are to-
tally ineffectual at incorporating spatial variability.
One thing seems true: the emergence of geostatistics
has forced practitioners of traditional statistical meth-
ods to embrace the importance of spatial variation. In
fact, interest in spatial statistics has exploded in the
statistical community in the last decade. In turn, geo-
statisticians have come to embrace more of the tra-
ditional ideas of statistics. The two camps have cer-
tainly not yet become one; but there does seem tobe a
greater level of cooperation and mutual appreciation
than in years gone by. Such a convergence of ideas
can only be good for quantitative problem solving
in general because it diminishes the distrust and
misunderstanding of the techniques harbored by
those who are peripheral to the conflict and who
are in need of real solutions to their problems.

GEOSTATISTICS VS.
STOCHASTIC MODELING

As noted above, stochastic modeling is perhaps
more general than geostatistics, but other differ-
ences exist. Stochastic differential equations are mod-
els, Markov chains are models, there are models
for time series, and fractals are commonly used

for models. In contrast, kriging in its various forms
is not really modeling. Although kriging is closely
linked to modeling of the variogram or covariance
function, the kriging process itself is not quite the
same as modeling in the traditional sense.

Although the term geostatistics has became syn-
onymous with the stochastic approach to spatial es-
timation, there are those who contend that this view
is far too narrow. Given the breadth of work in spa-
tial statistics and spatial estimation in recent years
(see Anselin, 1988; Davis, 2002; Haining, 2003), this
complaint could certainly be afforded some credence.

Stochastic modeling, to the extent that it is dis-
tinct from geostatistics, has, perhaps, had stronger
mathematical ties. The link to mathematics is readily
apparent in its many applications (e.g., turbulence
problems; see Batchelor, 1953; Lumley, 1970; and the
work of Kolmogorov as summarized by Hunt et al.,
1991; Frisch and Kolmogorov, 1995). The principal
upshot of stochastic modeling research has been
to replace deterministic differential equations with
stochastic differential equations, which are especially
important when considering transport problems in
the subsurface.

Although the breadth of applications for geosta-
tistics has been steadily increasing, stochastic mod-
eling is probably better known in disciplines such
as hydrology and petroleum engineering. The prin-
ciples of stochastic modeling are also known be-
yond the realm of earth and environmental science,
with applications in fields such as mathematical
finance and actuarial science (Actuarial Foundation,
2003). Geostatistics, however, finds most of its ap-
plications in the exploration and characterization of
natural resources, with a particular historical link to
the mining industry. B

A natural question that might be asked, then, is
whether sufficient cross-fertilization is occurring
among disciplines; that is, whether the ideas and
results generated in one discipline or area of ap-
plication are being sufficiently used in other areas.
Although it would be hard to give a definitive an-
swer, simply asking the question raises the level of
interest and consideration. Unquestionably, more.
interdisciplinary interaction is needed throughout
all the sciences, along with more integration of sci-
ence and business; and so, acknowledging the need
for increased cooperation and communication could
only serve to enhance the understanding of geo-
statistical and stochastic modeling approaches and
their applications in scientific investigations.
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COMPUTING AND
SOFTWARE CONSIDERATIONS

To a considerable extent, it is possible to link and
trace the development of geostatistics and stochastic
modeling, as well as growth in their applications,
to the advent of inexpensive and accessible comput-
ing (e.g., interactive multiuser systems such Digital
Equipment’s virtual address extension (VAX) ma-
chines and the personal computer). Ready access to
computational resources has given rise to several
individualized and customized computer programs,
because individuals and groups have tended to de-
velop their own software throughout the years. This
is in strong contrast to the way in which software for
performing more traditional statistical computation.
Many of today’s geostatistical algorithms were de-
veloped during the same time frame that computing
capabilities were expanding, and so the algorithms
had to be refined in concert with computational en-
hancements. Traditional statistical methods and algo-
rithms, however, are somewhat older, and some of
them predate the modern computer.

Because many of the procedures and routines used
to perform traditional statistical computations were al-
ready on the shelf, it was fairly straightforward when
the computer came along to operationalize and com-
pile them into integrated packages that could be fur-

* ther developed and commercially distributed. Conse-

quently, as computing organizations began to flourish
in businesses and universities, statistical software pack-
ages such as the Statistical Analysis System and the
Statistical Package for the Social Sciences, although
in their infancy, were already available for distri-
bution; and so, as demand increased, it was natural
for these packages to be routinely acquired. In most
cases, the purchase and acquisition decision, along
with the provision of subsequent maintenance and
support, was assigned to central computing orga-
nizations, and the code was commonly accessible
only on mainframe machines. At the same time, be-
cause many organizations were obtaining and using
the same software, there was a strong move toward
standardization (of the algorithms) and widespread
testing of the code, thereby increasing their appeal.
As a direct consequence, a strong market for statis-
tical software evolved that persists even today, with
continued enhancement of the procedures and codes
being almost totally commercially driven.

As suggested above, the manner in which soft-
ware evolved to perform traditional statistical com-

putations is quite different from the evolution of
geostatistical programs and software for stochastic
modeling. Although there is, indeed, some commer-
cially available geostatistical software, such as the
venerable Bluepack and its successor Isatis, as well
as geostatistical add-ons for comprehensive statis-
tical packages like S-Plus and geographic information
systems such as ArcView developed by the Environ-
mental Systems Research Institute, commercializa-
tion has not been the primary driver, and the market
for these products is considerably smaller. For pe-
troleum and mining companies, cost has been less
of an impediment; but for many practitioners, there
is a strong reliance on free software such as the aging
GeoEas, GSLIB, and more recently, Gstat and GeoR,
both of which have been ported to the freeware plat-
form R. Although there are obvious advantages to
this approach, there are also distinct disadvantages.
For example, there is little in the systems, or by way
of geostatistical practice, to ensure that the same data
processed by two different software packages will
produce the same results. Further, the options and
features of the different implementations are not
likely to be the same. In general, the algorithms are
moderately well understood, but there may be exten-
sive differences in their implementation. The advent
of Fortran-based GSLIB perhaps set some standards;
but GSLIB has not been systematically updated as a
package. Now, many algorithms are not included,
and the use of the Fortran code in batch operations is
becoming outdated.

This situation is complicated, of course, by the
wide variety of people, groups, and disciplines that
use geostatistics and stochastic modeling. Few are
exposed to the broad range of journals that now
publish papers whose results are based on geosta-
tistical analysis or stochastic modeling. In addition,
companies and businesses are reluctant to divulge
proprietary codes and systems because they want to
maintain their competitive advantages.

Such circumstances suggest the need for increased
standardization. One possible solution would be
to establish a formal mechanism by which similar
codes or packages could be operationally and nu-
merically compared, with the results of such com-
parisons being widely disseminated. This is a com-
mon practice with regard to commercially available
statistical (traditional) analysis packages (see the
regular reviews that appear in publications such
as The American Statistician). Without diminishing
the uniqueness of individual codes, the objective
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might be to establish some common performance
benchmarks that could be recognized and accepted
throughout the geostatistical community.

SIMULATION

Simulation is a term that evokes different mean-
ings for individuals working in different disciplines.
It may be deterministic in character (e.g., numeri-
cal solution of a differential equation), or it may be
probabilistic (e.g., Monte Carlo methods). Simula-
tion is used for a variety of problems and applica-
tions, particularly when it is difficult or costly to
obtain live data. For example, the U.S. Geological
Survey has developed several routines to simulate
fluid flow in the subsurface that have been widely
adopted. In geostatistics and stochastic modeling,
simulation commonly refers to the process of gen-
erating multiple realizations of a random function
to obtain an acceptable numerical solution to a prob-
lem. One or more of these realizations may serve
as the input for other computer programs (e.g.,
MODFLOW, the modular, three-dimensional [3-D],
finite-difference ground-water—flow model devel-
oped by the U.S. Geological Survey uses simulated
cell values for hydraulic conductivity to generate
alternative flow patterns).

By its very nature, simulation cannot produce an
answer that is absolutely correct. Although the pro-
cess may yield a very good approximation that is
altogether admissible, uncertainty is always associ-
ated with the result. This uncertainty arises in sev-
eral ways. Obviously, assumptions that are improp-
erly imposed, or imperfections in the estimates of
one or more process parameters, can lead to ques-
tionable results; but there is also uncertainty in
knowing which of the many results (or realizations)
to choose from among all those that can be pro-
duced through simulation. In addition, there can be

many different ways to simulate the same process.

or phenomenon, and so the choice of an approach,
or algorithm, can also contribute to uncertainty about
the result. :

Several different algorithms are associated with
the geostatistical or stochastic approach to simula-
tion, including the turning-bands algorithm (which
is really a procedure to generate 3-D realizations
from multiple one-dimensional [1-D] realizations),
covariance matrix decomposition (variously called
Cholesky decomposition, LU decomposition, etc.),

sequential Gaussian simulation (and multiple vari-
ants thereof), and simulated annealing (which is re-
ally based on an optimization approach of the same
name). Some of these implicitly rely on assump-

tions pertaining to the multivariate Gaussian dis-

tribution, and all of them essentially require use of
a known covariance function (i.e., only second-order
propertiés of the random function are reproduced).
Each has been developed because of perceived weak-
nesses or difficulties with competing or alternative
approaches; but unfortunately, in many cases, it is
not immediately clear how to choose among them.
Little effort has been devoted to theoretical com-
parisons, and empirical examinations are generally
complicated by the several restrictions previously
suggested.

First, it is commonly the case in practice that
only a small number of realizations can be gener-
ated (because of cost, time, or other constraints),
with each realization encompassing only a finite (al-
though perhaps large) number of locations. In this
situation, it would be essentially impossible to con-
duct any meaningful numerical comparisons among
the results of several competing algorithms. Sec-
ond, little work has been done on the problem of
selecting the best realization from among all those
that can be produced through simulation. Because
process parameters are commonly assumed to be
characterized by statistical distributions (e.g., Gauss-
ian), any number of different realizations can be
randomly produced, and identification of one or
more that appear to be optimum is largely a sub-
jective process. Finally, on an even more funda-
mental level, the initial choice of the algorithm(s)
itself is important if the simulation results (i.e., the
realizations) are to be used for further analysis or
for decision making because those results are likely
to change if a different algorithm is selected. Note
that, with the exception of simulated annealing, the
various algorithms only reproduce the distribu-
tional characteristics of the quantity of interest in
an average sense (i.e., averaged across realizations),
and so, direct comparisons of individual realiza-
tions produced by different algorithms using es-
sentially the same inputs would not be completely
valid anyway.

An additional aspect of simulation that has re-
ceived inadequate attention is random-number gen-
eration. All geostatistical-simulation algorithms rely
on random-number generators when producing
various results, and yet there is a tendency in the
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literature to ignore the possible effects arising from
inappropriate or inadequate procedures (see Van
Niel and Laffan, 2001). This situation begs for more
theoretical and empirical investigation, but virtually
no work has been done on it within the geostatistical
community. A solid research effort to examine and
substantiate the quality of random-number genera-
tion algorithms could yield great dividends and
broaden the collective understanding of simulation
in the geostatistical context.

THE NOTION OF SUPPORT

One of the crucial distinctions between spatial
statistics (which could be interpreted as including
both geostatistics and stochastic modeling) and what
might be called classical or traditional statistics is
the explicit recognition of the importance of the sup-
port of the data. Support has to do with the idea that
the value of some quantity of interest is related to
the physical size (and possibly the dimensions) of the
unit on which it is recorded. For example, in the
context of ore reservation estimation, it is commonly
the case that assay values are associated with the
volume and shape of a core, and average grades are
‘associated with the size and shape of mining blocks.
A fundamental understanding of this notion has de-
veloped over the years in various disciplines. For
example, in geography, it is widely known as the
“modifiable areal unit” problem; and in a classic
paper, Smith (1938) recognizes its implications for
agriculture. For a discussion of Smith’s results in the
context of geostatistics, see Zhang et al. (1990). Al-
though much of the investigation of support predates
the more recent expansion of geostatistical method-
ology, the ideas of block kriging and regularized
variograms are, in fact, tools for incorporating the
idea of support into geostatistical analyses.

The theory pertaining to these tools is fairly well
known, yet practical problems of application still need
to be solved. For example, computing point-to-block
and block-to-block covariances is commonly accom-
plished through numerical integration, which is im-
bedded in software. However, the software options
often do not accommodate the irregularly shaped
regions that are commonly found in practice, and so,
the notion of support is incompletely or inaccurately
addressed. Furthermore, whereas a regularized vario-
gram or covariance can be theoretically related to a
point support model, it is difficult in practice to ob-

tain such a model from nonpoint support data. Such
difficulties arise, for example, in the contexts of up-
scaling and downscaling geological, petrophysical,
or engineering properties. Still other complications
may occur in practice when determining the actual
support of the data (e.g., when hydraulic conductivity
is measured using a pumping test), resulting in re-
stricted application of the currently known theory.

BAYES, ENTROPY, AND
MULTIPOINT CORRELATION

As suggested above, an even more diverse array
of ideas from traditional statistics have made their
way into geostatistical thinking and research in re-
cent years. Three such ideas, in particular, have cap-
tured the interest and imagination of practitioners.

The first has to do with multipoint correlation.
Both the variogram and the covariance function are
two-point functions (i.e., each quantifies the similari-
ty or dissimilarity of the values at a pair of locations
in space). Each is a second-moment function. Geo-
statistics and, to some extent, stochastic modeling are
strongly based on the assumption that knowledge
of second-order moments is sufficient. The kriging
equations depend only on the variogram or covari-
ance (with appropriate assumptions about the mean)
and not on other properties or characteristics of the
random function. However, it is also known that
second-order moments are far from adequate in char-
acterizing even a second-order stationary random
function. The variogram is somewhat analogous to
a derivative in the sense that both filter out con-
stants because both are based on first-order differ-
ences. In contrast, higher order generalized functions
are based on higher order differences. First-order
differences are essentially dimension-free, whereas
higher order differences are not. As seen in Delfiner
(1976), to generate sample-generalized covariances,
it is necessary to construct higher order differences.
To obtain acceptable multiple first-order differences,
one may rigidly translate any pair of points. The
coefficients in the difference (+1,—1) remain un-
changed; but the same is not true for a second-order
difference. In 1-D space, one can take the trio of
points (s — h,s,s + h) with coefficients (f,—2,1), re-
spectively. Moreover, if the pattern of points is rig-
idly translated, then the coefficients will likely change.
Hence, what might seem to be an obvious extension
to two-dimensional space does not work.
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Although a multiple-point correlation function is
not quite the same as a generalized covariance, some
analogies are present. Under a second-order station-
arity assumption, Cov(Z(s + h),Z(s)) is a function of
h alone. Even without this assumption, the geo-
metrical pattern determined by the pair of points
is the same (a line segment; although its orienta-
tion might change) and is not dependent on the
magnitude of k. In contrast, the assumption that
Cov(Z(s), Z(s + h1), Z(s + h1),..., Z(s + hg)) is only
a function of (hy,..., hx) is much stronger. More-
over, the geometrical pattern of the points (s, s +
hi,..., s + hx) can change greatly as the relative
magnitudes and the orientations of the (h,.. ., hx)
change. Clearly, Cov(Z(s), Z(s + h1), Z(s + h1),.. .,
Z(s + hg)) captures more information than Cov(Z(s +
h), Z(s)). ,

Various authors (e.g., Guardano and Srivastava,
1993; Krishman and Journel, 2003) have proposed
some form of multipoint correlation function that
would characterize the random function to a greater
degree. This idea does not seem to have progressed
very far, and practical difficulties still exist. In par-
ticular, estimating and modeling such functions
would likely require large data sets. There is also the
question of how to actually apply such functions.

The second issue concerns the evolution of geo-
statistical methods that have been developed from
the Bayesian point of view (see Diggle et al., 2003).
In the traditional statistics literature, there are com-
monly heated disputes about whether the Bayesian
or frequentist approach is better. Both the successes
of Bayesian statistics and the advent of greater com-
puting power have led to an interest in Bayesian
geostatistical methods. The geoR package for R in-
corporates basic Bayesian geostatistical tools (also,
see Diggle and Tawn, 1998). Whether such approaches
continue¢ to be developed likely depends on the
availability of appropriate software, and currently,
such software is not widely available.

The third issue has to do with an evolving un-
derstanding about the results obtained with kriging,
which, of course, is a widely used spatial estimation
procedure. The usual kriging equations are obtained
by minimizing the estimation variance (with the
unbiasedness constraint); and, yet, it is now well
known that the resulting kriging variance is not ex-
actly a variance in the usual sense of the term. The
kriging variance does not directly depend on the
data and, hence, provides only a relative measure
of reliability. This has led to an interest in entropy,

| best exemplified by the work of G. Christakos (e.g.,

Journel and Deutsch 1993; Christakos and Li, 1998;

Hristopulos and Christakos, 2001). Several defini-

tions of entropy exist, and one must be careful to
distinguish between the discrete and the continuous
case (see Cover and Thomas, 1991, especially chap-
ters 9 and 11). First, consider the discrete case. Sup-
pose there are outcomes Ej,..., E, with associated
probabilities p(E;),. .., p(En). Then, the information-
theoretic entropy is given by

—> p(E) Inp(E;)

This is also known as Shannon'’s (1948) entropy but
is also found in Pauli (1933). It can be interpreted as
the average loss of ignorance or gain in knowledge.

For many applications, however, one must con-
sider continuous distributions. If f(x) is the density
function of a univariate continuous random variable,
then the entropy is defined as

HU%:—/ﬂ@hJ@Mx

This expression is different from the entropy for a
discrete random variable. The values of the density
function are not probabilities, and in particular, they
are not bounded by the interval [0,1]. Thus, the en-
tropy may not exist (i.e., the [improper] integral may
not converge to a finite value). Moreover, it need not
be positive.

To make this definition consistent with the pre-
vious one, it is nécessary to introduce a reference
density g(x) and consider the following integral:

- [ ol o g0l

The justification for maximizing the entropy can be
made from various perspectives, but even then, the
solution is not unique. It is commonly noted or
claimed that the normal distribution has maximum
entropy. This is not quite complete; a question
about additional constraints must be addressed. If
the density function is only nonzero on an interval
[4,b], then the uniform distribution has maximum
entropy. If the density is only nonzero for [0, co) and
the expected value is fixed, then the exponential
distribution has maximum entropy. If the density
function is nonzero on (—oo,00) with fixed expected
value and fixed variance, then the normal distribu-
tion has maximum entropy. The actual maximal value
will depend on the variance. In Bayesian maximum
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entropy, it is the posterior distribution for which the
entropy is maximized.

Unfortunately, this higher level of mathematical
complexity and a lack of readily available software
have precluded a formal test of whether the entropy
results are really better than those obtained with the
usual forms of kriging. Additional investigation is
clearly needed, but such work may simply have to
wait until practice and operational implementation
catches up more with theory.

With regard to each of these issues (as well as
others), an impediment to further development and
expanded application seems to be the absence of
software, especially at the commercial or semicom-
mercial level. That such software is not yet readily
available likely reflects a lack of easily translatable
algorithms and a general immaturity of the scien-
tific principles. Although this situation is expected
to change, the extent to which such ideas will per-
meate geostatistical thinking in practice is yet to be
determined.

DESCRIPTIVE OR INFERENTIAL?

Traditional statistics operates at two levels: de-
scriptive and inferential. If the objective is to sum-
marize the measurements represented by a given
_data set, then the task is a descriptive one (hence,
the term ““descriptive statistics’”). However, if the
data are assumed to be a random sample from a
larger population and the objective is to use such
'sample data to draw conclusions or make inferences
about the entire population, the task is one of in-
ference (hence, the term “inferential statistics”’). Both
geostatistics and stochastic modeling are somewhat
closer\to descriptive statistics than to inferential
statistics. That is, drawing conclusions about the
specific data set and/or the specific source of the
data is more common than drawing conclusions
about the entire population in question. In particu-
lar, the geostatistical literature is almost void of
references to tests of hypotheses, which is a fun-
damental approach to traditional statistical infer-
ence, particularly from the frequentist viewpoint.
However, hypothesis testing could be a valuable
factor. For example, it might be desirable to test the
underlying assumptions of the modeling approach
(such as second-order or intrinsic stationarity) or
to evaluate the goodness of fit of the variogram and
covariance function. The book by Stein (1999) is

perhaps one of the few texts that devotes any space
to such ideas. Whitten (2003) raises a more general

‘question about the function of hypothesis testing

and questions why this has received less attention.
Pardo-Igtizquiza and Dowd (2004) provide one ex-
ample of applying hypothesis testing in the context
of geostatistics.

UNCERTAINTY AND RELIABILITY

Statistics, by its very nature, is intended to deal
with problems and data in a manner that acknowl-
edges conclusions will be couched in terms of un-
certainty (e.g., probabilities of types I and II errors
associated with hypothesis testing; confidence level
and margin of error associated with confidence in-
terval estimates of population parameters). When
kriging was first introduced and promoted as a
superior estimation technique (i.e., superior to the
nearest neighbor technique commonly in use at the
time), one of the claimed advantages was that the es-
timates have minimum variance (i.e., the kriging vari-
ance is minimum). As suggested above, it was sub-
sequently recognized that the kriging variance is
more a function of the data location pattern and the
variogram model than it is of the data themselves.
At best, it is a relative measure of reliability because
it can be artificially increased or decreased without

changing the estimated values. Moreover, as what

has been pointed out by several authors, the kriging
variance does not truly incorporate the uncertainty
associated with estimating and modeling the vario-
gram. This point is addressed, at least in part, by
Stein (1999) but under rather strong assumptions.
Consequently, the question might be asked as to
whether there are more adequate ways to quantify
the uncertainties associated with spatial estimation;
and if so, how can they be used in a practical problem?

Although interest in quantifying the uncertainty
associated with variogram modeling goes back at
least to Davis and Borgman (1979, 1982), there have
been a series of more recent papers (e.g., Pardo-
Igtizquiza and Dowd, 2001; Ortiz and Deutsch, 2002;
Marchant and Lark, 2004). One important point is
commonly ignored: the sample variogram estimates
the values of the variogram but does not directly
estimate the variogram itself (i.e., the function). In
practice, then, one must choose a family of vario-
grams (e.g., Matérn, spherical, and power with one
or more parameters). Then, the sample variogram or
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the variogram cloud is used to estimate the parame-
ters. The problem is even more complicated in the
case of a nested model variogram. Neither maximum
likelihood nor weighted least squares do a good of
job of detecting the different components in a nested
model (or even the need for one). Although Matheron
(1973) gives an integral representation for vario-
grams, it is more difficult to translate this into prac-
tical use. Several extant results also make use of a
multivariate normality assumption, and hence, they
are most applicable in the case of variograms linked
to covariance functions. Again, this is an area in
which more work is needed.

COLLABORATIVE EFFORTS IN RESEARCH
AND SOFTWARE DEVELOPMENT

A great deal has already been made of the im-
portance of software to the proliferation of geo-
statistical methodology and stochastic modeling
approaches. As already suggested, it appears that
future developments will be strongly intertwined
with the creation of software packages that imple-
ment the various ideas, algorithms, and approaches.
Such an effort requires substantial financial and
intellectual resources. The geostatistical community
has greatly benefited in this respect from collabora-
tion between industry and academia. One success-
ful approach, which became popular in the 1980s,
has been for the consortia of companies to provide
financial backing of academic research programs
in the form of a participation fee to obtain proprie-
tary access to research results and computational
code. At least four such collaborative efforts are
worth noting, each involving one or more academic
groups and one or more segments of the petroleum
industry.

At the top of this list is the Stanford Center for
Reservoir Forecasting (SCRF), which is well known
among, and well supported by, oil companies. Over
the years of its existence, SCRF has given birth to
many new ideas in geostatistics, producing numer-
ous research publications. Most of the actual details
of the algorithms, as well as specialized codes, are
reserved, of course, for the financial supporters and
participants.

The gOcad project at the University of Nancy,
which is focused on 3-D Earth modeling, is another
such collaboration between industry and academia.
The consortium has resulted in the development

of the well-known gOcad software package, which
provides an alternative to traditional computer-
aided drawing of complex geological surfaces based
on discrete smooth interpolation. Although the ac-
tual software is reserved for supporters and group
members, the theory is well documented in the book
entitled Geomodeling (Mallet, 2002), and both pe-
troleum and environmental applications have been
reported.

A third example is Petbool, which is both a re-
search project and a software package originating
out of the collaboration between the Pontifical Catho-
lic University in Rio de Janeiro and Petrobras (see
Tavares et al., 2001). The acronym Petbool stands for
the combination of Petrobras and Boolean, and the
software provides 3-D visualization capabilities,
along with object-based geological modeling of oil
reservoirs.

Finally, the Statistical Analysis of Natural Re-
sources group at the Norwegian Computing Center
has developed multiple software packages largely
targeting the petroleum industry, which are sum-
marized and discussed in a recent article by Holden
et al. (2003).

The collaborative approach has been both good
and bad for the geostatistical community. Although
it has resulted in many new discoveries and de- -
velopments that have greatly expanded the scien-
tific and computational boundaries of the discipline,
the proprietary nature of programs has somewhat
restricted their application. Individuals and groups
without the financial resources to participate are left
struggling to devise alternative computational ap-
proaches on their own, which has led to unneces-
sary tension between those who have dccess to the
best algorithms and code and those who do not, as
well as incomplete understanding of the solutions
to problems that can be obtained. Consequently, both
the industry and the scientific community might
now be better served by more open communica-
tion of geostatistical knowledge and greater acces-
sibility to software than what has been available in
the past. Such a suggestion, of course, requires a
different kind and level of cooperation and a great
deal of leadership and effort to make it work. More
immediately, a survey article providing a more de-
tailed summary and comparison of the different
analytical and modeling approaches, as well as the
software capabilities, would be very useful. The
practices common in-the broader field of statis-
tics may be relevant here. STATLIB (http://lib.stat
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.cmu.edu/) is an archive of algorithms and program
codes. As noted previously, The American Statistician
has a regular section devoted to the review of sta-
tistical packages. In addition, a section of the Ameri-
can Statistical Association is devoted to statistical
software and graphics.

LANGUAGE DIFFICULTIES

As in the case of all scientific disciplines, there
have been many controversies within the geostatis-
tical community over the years. Interestingly, argu-
ment about the meaning and intent of some of the
fundamental terminology still exists. For example,
the term ““variogram’’ was originally used to denote
the quantity

Var[Z(s + h) — Z(s)] = 2y(h)

under the assumption that it was finite for all values
of s and & and did not depend on s (see Matheron,
1971). However, under the second-order stationar-
. ity assumption, it is easy to show that

0.5 Var[Z(s + h) — Z(s)] = Var[Z(s)]
— Cov[Z(s +h),Z(s)]

or

where y(h) = 0.5Var[Z(s + h) — Z(s)] and C(h) =
Cov[Z(s +h), Z(s)]. Thus, it was natural to focus more
on half of the ?ariogram; hence, the term “’semi-
variogram.” However, it soon became apparent that
there were few, if any, instances in geostatistics
where it was really necessary or even useful to con-
sider the (original) variogram instead of the semi-
variogram (as an example, the kriging equations
are easily derived and written in terms of the semi-
variogram). In the 1980s, many authors began using
the term variogram to denote the semivariogram,
omitting any reference to the original quantity. There
were two principal advantages of this shift: (1) it
simplified the language usage in all written and
oral communications (e.g., experimental variogram
seemed easier to say and communicate than ex-
perimental semivariogram); and (2) it avoided the
confusion created when the two terms were used

interchangeably or incorrectly, even when a dis-
tinction might have been technically correct.

Clearly, the shift in terminology was not and is
not universal, and there are those who insist on
using the original usage, which is certainly their
prerogative. It is difficult to say which term is more
common today; but, as an exarﬁple, an examination
of the proceedings of the 1988 International Geo-
statistics Congress in Avignon, France, suggests that
most authors (or perhaps the editor) used vario-
gram exclusively, a few used semivariogram exclu-
sively, and a few others used the two terms inter-
changeably. A similar pattern can be observed in
many later texts and compilations. The documen-
tation for some software packages (e.g., GeoEas,
http://www.epa.gov/nerlesd1/databases/geo-eas
/access.htm) only uses variogram, and several au-
thors (e.g., Chiles and Delfiner, 1999) only acknowl-
edge semivariogram as an older, unused term. The
issue is not, and likely never will be, resolved.

Unfortunately, this is not the only inconsistency
in geostatistical terminology. At least two other
words (or terms) that appear with some frequency
in the literature do not always have precise meanings.
“Robust” (or robustness) is one example. Kendall
and Stuart (1979, p. 492) wrote that “A statistical
procedure which is insensitive to departures from
the assumptions which underlie it is called robust.”
This definition is originally attributed to Box (1953).
The problem is that the assumptions underlying a
particular procedure may not be clearly stated, or
their relevance may not be clearly understood; and
s0, too commonly, the term robust is used as a gen-
eral catch-all adjective. In the context of geostatistics,
it is generally thought that the ordinary kriging
estimator is robust with respect to the values of
the variogram parameters. However, it may not be
so robust with respect to the underlying distribu-
tion of the random function or the intrinsic sta-
tionarity assumption; and so, as a broadly descrip-
tive term, robustness may not be an appropriate
characterization.

Another word that presents some interpretive
difficultiés is “‘representativeness.” Sometimes, it
will be claimed that a sample is representative, and
occasionally, other quantities or statistics are called
representative. Unfortunately, it is commonly un-
clear in what sense the characteristic of represen-
tativeness applies. Intuitively, representative is a |
word that sounds desirable, and consequently, it is
tempting to claim that some quantity or procedure
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is representative. It is easy, in fact, to think of ways
in which samples might be considered representa-
tive. For example, if the empirical distribution of the
sample is the same or nearly the same as the dis-
tribution of the population, then the sample might
be called representative. In this case, the sample
mean and variance might be expected to be close to
the population mean and variance, respectively. Un-
fortunately, none of these attributes can be known
in advance, and in fact, the population may not
have a finite mean or finite variance. Obviously,
random samples need not be representative at all.
Hence, to remove the ambiguity and to avoid con-
fusion, it would be extremely helpful in all com-
munications of this nature for geostatisticians and
their colleagues to explicitly state the sense in which
representativeness applies.

Although language differences might not be the
primary cause of divisions among practitioners,
they still represent a source of irritation and con-
fusion for those outside the immediate geostatis-
tical community, and they do not serve to place the
field in the best scientific light. To ensure the future
of the discipline, geostatisticians would do well to
engage in a conversation aimed at standardizing
language and terminology and in making geosta-
tistical communications more effective, more under-
standable, and more accessible to a wider range of
potential users,

N
FINAL THOUGHTS

It seems obvious that geostatistics and stochastic
modeling are alive and well, and that they will
continue to be adapted and exploited for the fore-
seeable future. As suggested earlier, neither disci-
pline has evolved by altogether conventional means
through largely theoretical academic endeavors, but
instead, through extensive experience, practice, and
applied problem solving in the context of a rich and
diverse array of applications. It is this focus on
applications that makes the tools of these disciplines
so attractive in many areas of investigation.

In 50 or even 20 yr, geostatistics and stochastic
modeling will no doubt look different. They may con-
tinue to converge, or they may diverge along entirely
new or different paths. However, if history is a strong
indicator of the future, it seems certain they will
further evolve within an applications and problem-
solving framework. There will be theoretical enhance-

ments, to be sure, and perhaps some truly astonish-
ing breakthroughs; but the need to address both
simple and thorny questions from an applied point
of view is likely to remain the primary driver.

In a very real sense, the world is becoming smaller
with the relentless advances of technology. As a
result, science, business, industry, medicine, politics,
and the like are becoming increasingly focused on
spatial relationships. It is the spatial domain in which
stochastic modeling and geostatistics found their
beginnings, and it is within this same spatial domain
that they will surely continue to flourish.

Obviously, the future is unknown; but stochastic
modeling and geostatistics seem destined to exert
even greater influence on the way people think
about the world around them. Although their past
contributions will persist, there will likely be many
new applications and developments that will have
profound influence on global thinking and well-
being. This book catalogs some of the many exam-
ples illustrating progress and enhancements through-
out the last 10 yr, specifically in the rich areas of earth
and petroleum science that have been traditional
strongholds for geostatistics and stochastic modeling
since their early beginnings. The next decade and
beyond promises to be an equally productive and
exciting time in which geostatistics and stochastic
modeling impact not only the geosciences but im-
portant areas of investigation far beyond this tradi-
tional base.
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